
 

 

 
 

ECOO 2000 
Programming Contest 

 

 

Boardwide 

Contest 

 
 



Problem 1 – Time 
 
At any given time, the hour hand and the minute hand of a clock will form an angle. 
Write a program that calculates and prints the angle in degrees, minutes and 
seconds (rounded), given the time in hours, minutes and seconds. Note that the 
angle is always 180o or less.  

Note that a degree measure is divided into 60 minutes or 3600 seconds.  

Your program will read from an input file (DATA11.txt for the first try and 
DATA12.txt for the second) five lines. Each line contains 8 characters representing 
the time in the form hh:mm:ss  

Print out the data on a cleared screen (window) Each output must be separated from 
the others by a blank line and be of the form: ddd:mm:ss.  

Sample input 
   

   12:00:00  

   06:00:00  

   03:30:00  

   12:25:05  

   06:00:10    
 
Sample output 
 
  000:00:00 

  180:00:00 

  075:00:00 

  137:57:30 

  179:05:00   

 



Problem 2 – Four Cubes 
 

A packing company needs an economical way 
in which to package sets of four cubes. These 
cubes come in different sizes, and the 
company has a packaging machine that will 
create appropriate sized boxes, given the 
three dimensions.  

Your task is to write a program that will find 
the smallest volume of box in which the four 
cubes can fit. (The empty spaces around the 
cubes will be filled with styrofoam).  

Your program will read from an input file 
(DATA21.txt for the first try and DATA22.txt 
for the second), 5 sets of 4 integers. The 4 numbers represent the sides of the 4 
cubes, its values between 1 and 1024 
 
Print the three dimensions of the packing box in decreasing order (the largest side 
first, the smallest side last) all on one line as is shown in the example below. 
 
If more than one arrangement will yield the same minimum volume, than any one 
solution is valid: (if all 4 cubes are the same size, with say 10 cm to the side, then 
the minimum value of 4000 cm3 can be obtained by a box of dimensions: 40x10x10 
and a box of dimensions: 20x20x10) 
 
Sample Input 
 
10 30 50 5 

10 10 20 20  

6 7 9 8  

1 2 3 4  

67 88 3 90 

 
Sample Output 
 
80x50x50 with a volume of: 200000  

50x20x20 with a volume of: 20000  

17x15x9 with a volume of: 2295  

7x5x4 with a volume of: 140  

245x90x90 with a volume of: 1984500 
 
 



Problem 3 – Radio Station 
 
A radio station wishes to find the one place in town that is central to 
the population of a given town. It means that it wants to minimize 
the distance to each and every resident.  

Its strategy is to find the two houses that are furthest apart from 
each other, and position itself halfway between them. It is not the 
perfect solution, but the station owner finds that it is good enough. 
Based on all the data given, the station will create a map, where 
each residence is represented by a green circle, and the radio 
station by a red one.  

First, based on some arbitrary origin, it assigns an ordered pair of integers (x,y) to the 
position of each residence . It then proceeds to find its own future location.  

The input file DATA31.txt (DATA32.txt for the second attempt) contains 5 sets of data. The 
first line contains the number of houses (n), and the next n lines contain the x and y values 
(integers) of the positions of n residences, with one space in between.  

Your output will be five "maps" of residences (represented by green circles) and one radio 
station (represented by a red circle).  

Each of the 5 maps must remain on the screen until any key is pressed.  

Each map must be scaled along x and y in such a way, that it occupies all available space of 
the output screen. This means that the circle representing the residence with the greatest x-
value must touch or nearly touch the right hand edge of the screen; the one with the largest 
y-value the top of the screen; the one with the smallest x-value the left hand edge of the 
screen; the one with the smallest y-value the lowest edge of the screen. The other circles 
will be placed on the screen in proportion.  

Input (two of five sets)   Output 
 
3  

200 200  

100 100  

300 300  

7  

34 59  

90 6  

100 51  

42 120  

62 35  

45 93  

86 88  
 

 



Problem 4 – Fractions 
 

Imagine that your little brother has to do a series of multiplication and division 
problems for homework. His teacher created a program that will generate a series of 
random fractions, and is now emailing innocent little eleven-year-olds, like your 
brother, with huge amounts of homework.  

The problems consist of a set of up to 5 fractions each that have to be multiplied or 
divided. 
He is turning to you, with the hope that you can quickly create a program that will 
generate a solution to all of them.  

In order to test you program, DATA41.txt (DATA42.txt for the second try) consists 
of 5 lines of data containing up to 5 fractions each. They are separated by either a * 
(for multiplication) or a / (for division)  

Fractions will always be between round brackets such as (-5/8) and (4/1) or (4) Note 
from the example that there may be extra spaces in the line. Note also, that 
individual integers, including those in the answers, are not larger than 231.  

Output should be on a cleared screen (or window). The five lines should be 
separated by a blank line as shown in the example below. Fractions in the answer 
must be simplified, and a denominator of 1 avoided. Only the numerator may have a 
negative sign. Each operator must be surrounded by exactly one space, and no 
other spacing is allowed.  

Sample input   
 
(15) * (15/12)/(4/5)  

(4/16)   /(12/5)*(7/2)/(-49/8)/(3)  

(5/1)  

(256/7)/(8/49)/(7/8)/(6)  

(1)*(1)/(1/6)  
 

Sample output 
 
(15) * (15/12) / (4/5) = (375/16)   

(4/16) / (12/5) * (7/2) / (-49/8) / (3) = (-5/252)   

(5) = (5)   

(256/7) / (8/49) / (7/8) / (6) = (128/3)   

(1) * (1) / (1/6) = (6)   

 



 

 

 
 

ECOO 2000 
Programming Contest 

 

 

Regional 

Contest 

 
 



Problem 1 – The Game of Q 
 
A certain crossword game consist of a 3x3 square, and two players. Each player alternates 
placing letters in the square, on the roll of a die. For the purposes of this problem, you do 
not need to know that on an even throw, a person may only place a vowel and on an odd 
throw a consonant. Only by rolling a 1 can one place the letter "Q", and each letter can be 
used only once. 

One player tries to create vertical 3-letter words and the other player tries to create 
horizontal 3-letter words. 
Each consonant in a valid word is 1 point, a vowel 2, and the letter Q=3 
However, a 3-letter word is only valid, if it obeys the following 7 rules: 

1. The word must contain at least one vowel (A, E, I, O, U) 
(the letter Y is considered a consonant)  

2. The word must contain at least one consonant  
3. If a word starts with a vowel and ends in a consonant, the middle letter must be a 

vowel or one of: L , R  
4. If a word ends with a vowel and starts with a consonant, the middle letter must be a 

vowel or one of: L , S  
5. The word may not end with a V,W or Y  
6. The word may not start with an X  
7. The Q must be followed by a U (middle letter) and one other vowel  

Write a program that will read from a text file (DATA11.txt for the first try and DATA12.txt for 
the second) 5 sets of data. Each set of data consists of 3 lines containing a 3-letter word in 
capital letters. This data represents the completed 3x3 square, and it is your task to find the 
correct score.  

Output 10 lines on a cleared screen. Each set of two lines must be separated by a blank line 
and indicate the score for "Horizontal" and "Vertical", as in the example below. The 
individual marks are for words from left to right or from top to bottom.  

Sample Input 
 
GQE OUT PAI  

PLO SRP AEI  

KTL QUR MEW  

VIE LUR OMA  

TIF ESV PLO  

Sample Output  
 
Horizontal score: 0 + 5 + 5 = 10       

Vertical score:   4 + 7 + 5 = 16   

 

Horizontal score: 4 + 0 + 0 =  4       

Vertical score:   4 + 0 + 5 =  9          

 

Horizontal score: 0 + 0 + 0 =  0       

Vertical score:   0 + 5 + 0 =  5          

 

Horizontal score: 5 + 4 + 5 = 14       

Vertical score:   4 + 5 + 5 = 14          

 

Horizontal score: 4 + 0 + 4 =  8       

Vertical score:   4 + 0 + 0 =  4   
 

Problem 2 – Matrix Multiplication 



 
Matrices are formed of numbers arranged in rectangles.  

Two matrices can be multiplied by taking rows of the left matrix and columns of the right 
matrix, multiplying the first element of a row with the first element of a column, the second 
element of a row with the second element of the column, and so on. The products are then 
added. The new matrix is formed of all the possible combinations of results. the x-th row of 
the left matrix multiplied by the y-th column of the right matrix becomes the new element in 
the x-th row and y-th column.  

Clearly, the number of columns of the left matrix must match the number of rows of the right 
matrix. And a 5x3 matrix multiplied by a 3x4 matrix will result in a 5x4 matrix:  

 
And consider for example the 2nd row X 3rd column, resulting in the element at row2, 
column 3, that is: (8 X 13) + (4 X 2) + (12 X 8) = 208  

Write a program that will read from a text file (DATA21.txt for the first try and DATA22.txt for 
the second) 5 sets of data. The first line of each set contains the number of rows of the left 
matrix (x), the number of columns of the first matrix (y), which also denote the number of 
rows of the right matrix and the number of columns of the right matrix (z). The next x lines 
contain the rows of data of the left matrix, followed by y lines containing the rows of data of 
the right matrix. Each set of row entries is bracketed by angle brackets as in the sample on 
the turn page.  

Note that x,y,z are numbers between 1 and 6 inclusive, and that the total number of columns 
of the 3 matrices will never exceed 16.  

Print the multiplication problem for each of the 5 sets separately on a cleared screen (or 
window). Create a pause between the output of each set, so that you can proceed only after 
pressing any key.  

Notice also, that the centres of matrices must be aligned with the X sign and the = sign  

For the brackets, you might use the standard IBM font set and chr(218), chr(179), chr(192) 
for the opening bracket chr(191), chr(179), chr(217) for the closing bracket (if that is not 
available to you, use the characters "/", "|" and "\" instead)  



Sample input 
6 5 2  

<5 2 1 0 -3>  

<8 4 12 -6 2>  

<-5 6 3 1 -4>  

<3 2 -12 7 5>  

<0 2 3 -4 -23>  

<-9 8 13 -6 6>  

<5 -4>  

<-2 3>  

<0 9>  

<0 -13>  

<-8 1>  

5 3 4  

<5 2 1>  

<8 4 12>  

<-5 6 3>  

<3 2 -12>  

<2 3 -4>  

<-9 8 13 -6>  

<5 -4 2 3>  

<-2 3 8 13>  

6 5 5  

<5 2 1 0 -3>  

<8 4 12 -6 2>  

<-5 6 3 1 -4>  

<3 2 -12 7 5>  

<0 2 3 -4 -23>  

<-9 8 13 -6 6>  

<5 -4 6 3 1 -4>  

<-2 3 3 2 -12 9>  

<0 9 -2 3 8 13>  

<0 -13 4 12 -6 2>  

<2 -12 7 5 2 -12>  

1 6 1 <5 2 1 0 -3 2>  

<8>  

<4>  

<12>  

<-6>  

<-5>  

<6>  

6 2 4  

<5 -5>  

<2 3>  

<1 2>  

<0 13>  

<-3 -9>  

<8 -4>  

<4 12 -6 2>  

<-4 6 1 3> 

 

 

 

 

 



Problem 3 – Matrix Multiplication 
 

Picture a text screen containing outlines of shapes. Since this is a text screen, the outlines 
are formed out of characters. It is your task, as the programmer, to fill these shapes with the 
same character as the outline (see the example below).  

There will be five shapes: A shape enclosed by A's, a shape enclosed by "B"'s, and so on. 
The last shape is enclosed by the letter "E". In some cases a shape ends at the edge of the 
text screen. Note from the example below, that a diagonal line may separate the inside 
from the outside of a shape.  

The small letter "x" in the input file represents empty space. On the screen you must replace 
those letters with blanks.  

For your convenience, exactly one letter P is placed inside each shape.  

The first line of the input file (DATA31.txt for the first try and DATA32.txt for the second) 
contains the width of the text rectangle and the second line contains its length (i.e. the 
number of lines of text that follow) In all cases, the text rectangle will fit a 79x25 text screen 

Print the text rectangle on a cleared screen, showing only the filled shapes:  

Sample Input 
 
34 25 

xxxxAAAxxxPxAxxxxxxxxxxxxExxxxxxxx 

xxxAxxxxxxxxAxxxxxxxxxxxxExxxxxxxx 

xxxAxxAxxxAAxxxxxxxxxxxxxExxxPxxxx 

xxAxxAxAAAxxxxxxxxxxxxxxxExxxxxxxx 

xAxxxAxxxxxxxxxxxxxxxxxxxEEEEEEEEE 

xxAxxAxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxAAAxxxxxxxxxxxxxxxxxxxCCCxxxxxxx 

xxxxxxxxxxxxxxxxxxCCCCCCxxxCCxxxxx 

xxxxxxxxxxxxBBBBBCxxxxxPxxxxCxxxxx 

xxxxxxxxxxBBxxxxxBCCCCCCCCCCCxxxxx 

xxxxxxxxxxxBBxxxBxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxBBBxxBxxxxxxxxxxxxxxxx 

xxxxxxxxxxxBxxBxxxBxxxxxxxxxxxxxxx 

xxxxxxxxxxBxxxBxxxxBxxxxxxxxxxxxxx 

BBBBBBBxxBxxxxPxxxxxBxxxxxxxxxxxxx 

xxxxxxxBBxxxxxxxxBBBxxxxxxxxxxxxxx 

xxxxxxxxxxBBBBBBBxxxxxxxxxxxxxxxxx 

BBBBBBBBBBxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxDDDDDDDxxxxxxxxxxxx 

xxxxxxxxxxxxxxxDxxxxxxDDxxxxxxxxxx 

xxxxxxxxxxxxxxDxxxxxxxxxDDDDDDDDDD 

xxxxxxxxxxxxxDxxxxxPxxxxxxxxxxxxxx 

xxxxxxxxxxxxDxxxxxxxxxxxxxxxxxxxxx  

 

Sample Output 
 
 
    AAAAAAAAA            EEEEEEEEE      

   AAAAAAAAAA            EEEEEEEEE    

   AAAAAAAAA             EEEEEEEEE     

  AAAA AAA               EEEEEEEEE    

 AAAAA                   EEEEEEEEE    

  AAAA                                

  AAA                   CCC                          

                  CCCCCCCCCCC                  

            BBBBBCCCCCCCCCCCC                

          BBBBBBBBCCCCCCCCCCC                 

           BBBBBB                              

            BBBBBB                         

           BBBBBBBB                          

          BBBBBBBBBB               

BBBBBBB  BBBBBBBBBBBB              

BBBBBBBBBBBBBBBBBBBB               

BBBBBBBBBBBBBBBBB                  

BBBBBBBBBB                                                        

 

 

                           DDDDDDD                            

                         DDDDDDDDD                         

              DDDDDDDDDDDDDDDDDDDD              

             DDDDDDDDDDDDDDDDDDDDD                 

            DDDDDDDDDDDDDDDDDDDDDD  

 



Problem 4 – Drop Box 
 

At a certain college, students drop their homework off in the drop box of their 
Computer Science professor. His two graduate students will mark these tests as 
they come in. If, however, both students are still busy with marking previously 
handed in work, the homework stays in the box until they can get to it. It may happen 
that several students drop off their work before they can be marked. It is your task to 
write a program that will find out who will mark whose test, and in what order. Each 
marker takes his or her own time marking each test. The marker who marks fastest, 
is also fastest picking up a paper. So, if both are waiting for a paper to arrive, the 
fastest marker gets the paper.  

For example, 5 students hand in their marks as follows: 
Markers Mohammed and Fatima will be marking. Mohammed takes 31 minutes for 
each paper and Fatima 30 minutes. 
Papers will be dropped in as follows: Mary at 11:41, followed by: John at 11:43. Nora 
at 11:45, Tony at 11:59 and Olivia at 12:08. 
Fatima is the fastest, and so:  
Fatima marks Mary's paper from 11:41 to 12:11.  
Mohammed marks John's paper from 11:43 to 12:14 
meanwhile Nora, then Tony and finally Olivia drop off their papers. 
At 12:11 Fatima picks up the top paper (Olivia's) and marks it until 12:41 
Mohammed picks up the next paper (Tony's) at 12:14 and marks it until 12:45 
Finally Fatima picks up the last paper in the drop box, Nora's.  

The input file (DATA41.txt for the first try and DATA42.txt for the second) consists of 
5 sets of data. The first line contains the total number of papers to be marked. The 
second line contains the name of one marker, a space, and the number of minutes 
that person takes for each paper. The third line contains the two pieces of data 
(name and number of minutes) for marker number 2. The remaining lines contain 
two data each separated by one space: a name and a time.  

All names consist of a set of letters, no more than 15 characters long, and no 
embedded spaces. There are between 3 to 60 papers to be marked in each set. The 
time will be between 9:00 and 17:00 inclusive (h:mm or hh:mm) and no two students 
will deposit their papers at the same time.  

Output on a cleared screen the names of the markers followed by one or more 
columns of names, that are to be marked by these graduate students. (Each column 
may contain no more than 20 names)  

Note that the names of students with their times are not necessarily in the right 
order.  



Sample Input   Sample Ouput 
(3 sets only) 
20  

Sally 16  

Mary 18  

Moe 11:23  

Darryl 9:47  

Gerry 10:32  

Randy 12:10  

Val 12:40  

Harry 10:33  

Evelyn 10:10  

Heather 10:43  

Tony 12:38  

Boris 9:32  

Perry 11:50  

Claude 9:45  

Garry 10:31  

Ian 10:49  

Olivia 11:44  

Drew 9:57  

Kelly 11:02  

Andy 9:13  

Sally 12:20  

Fred 10:23  

17  

Sam 11  

Tim 8   

Randy 12:36  

Amy  9:08  

Bert 9:23  

Garry 10:34  

Pete 12:28  

Fred 10:24  

Gerry 10:43  

Claude 9:54  

Orville 12:10  

Quinton 12:33  

Evelyn 10:09  

Chris 9:45  

Perry 12:19  

Jason 11:10  

Veronica 13:20  

Andy 9:18  

Moe  11:49  

5  

Mohammed 31  

Fatima 30  

John 11:43  

Nora 11:45  

Tony 11:59  

Mary 11:41  

Olivia 12:08    



 

 

 
 

ECOO 2000 
Programming Contest 

 

 

Final 

Contest 

 
 



Problem 1 – Word Puzzle 
 

Imagine a rectangular array letters in which 
are hidden a list of words. In many of these 
word games you must eliminate all the words 
in order to discover the leftover letters, which 
in turn form the hidden message. 

Figure 1, for example, is a 9 by 10 array of 
letters in which are hidden the names of 14 
countries (see left) 

 

 

These letters are arranged horizontally, vertically and diagonally, as shown in fig. 2. 
When these names are eliminated, the remaining letters form the name 

"VIRGINISLANDS" (see fig. 3). The text file data11.txt 
(data12.txt for the second try) will contain five sets of data. 
Each set of data consist of information on the rectangle and a 
list of words. 
 
The first two lines of the set of data contain the number of 
columns (c) and the number of rows (r), followed by r lines 
containing the rectangle of letters. This is followed by a line 
containing the number of words in the list (n), and n lines 

containing the words of the list. 

It is your task to find the hidden message in the remaining letters, when all the words 
have been eliminated.  

Print out each hidden message on a cleared screen, separated by blank lines. See 
for example the sample input and output data on the next page. 



Sample Input (3 sets only) 
 
8 7  

THMAVISE  

STANLEYF  

TIRROWAN  

ELYMOERP  

VSATPLEA  

EUNZZTLT  

NONAEERS  

12  

HAROLD  

STANLEY  

MOE  

STEVEN  

MARYANN  

MAVIS  

NONA  

PETE  

LEA  

PAT  

ROWAN  

ELY  

4 3  

FTGI  

BOAR  

DSHC  

3  

BOAR  

DOG  

CAT  

9 10  

ENGLANDML  

HHONOLULU  

KOVANIHCX  

RSLIGSIRE  

AUGLYTAEM  

MIERADNCB  

NBILANINU  

EAYNSLDAR  

DAADANARG  

NCRETEDFS  

14  

ENGLAND  

HOLLAND  

BELGIUM  

ITALY  

CANADA  

GRANADA  

LUXEMBURG  

HONOLULU  

CRETE  

DENMARK  

CHINA  

FRANCE  

SYRIA  

US 

Sample Ouput 
 
THEFIRSTPUZZLERS   

 

FISH   

 

VIRGINISLANDS  

 

Problem 2 – Projects 
 
Complex projects must be organized in smaller tasks that can then be placed in 
chronological order. Morely needs help organizing his project, and is turning to you for help. 



 
You are asked to write a program that can sort up to 10 tasks (A,B, ... , J) based on up to 10 
clues. If there are more than one solution to the problem, then any one will do.  
 
Clues are of the form illustrated below: 
B:FGHC means that task B depends on tasks F, G, H and C and must therefore be 
performed after all these other tasks have been done.  
 
Information will come from DATA21.txt (DATA22.txt for the second try). The text file will 
contain 5 sets of data: The first line of each set contains the number of tasks. (tasks are 
named by the appropriate letter of the alphabet: If there are 5 tasks to be performed, they 
would be named A. B, C, D and E) The second line will contain the number of clues that 
follow.  
A clue consists of one line composed of one letter, a colon, and up to 9 other letters, as 
shown in the example below. There are no embedded blanks.  
 
All task relationships are consistent, and resolvable. Print the tasks in order in which they 
should be performed, as shown in the example below:  
 

Sample Input (3 sets only) 
 
4  
3  

D:C  

C:A  
B:DC  

10  

10  
A:BDI  

F:IAEG  

J:HIDB  
E:GBD  

C:F  

B:GI  
D:B  

J:CI  

H:C  
G:I  

2  

1  
A:B   

 
Sample Output  
 
ACDB   

IGBDEAFCHJ  

BA   



Problem 3 – Truck Driver 
 

A truck driver wishes to go from city A to city B, along the 
grid as shown. She can only move east (right) and north 
(up). 
The numbers represent cities, and moving from one city to 
the next represents a one day trip. 
It would therefore take a ten day trip to go from A to B.  
At each town she must stay the night, and check into a 
motel at a cost that varies with each city. 
It is also possible to go cross country, and drive diagonally 

in a north-easterly direction, but that is so tiring, that she will have to stay in the following 
town an extra day. It would therefore still take 10 days to go, say, from A to 23 to 17 to 11 to 
5 to 6 to B, however, she might, by doing so, avoid a night in an expensive town. 
 
Your problem is to find for her the cheapest route from A to B. The Text file (DATA31.txt for 
the first try and DATA32.txt for the second) consists of a list of 35 numbers, representing the 
price of a night at the local motel. Note that the price is always a 2-digit integer. 
The first number is the price of the motel in town 1, followed by 2 etc. in order, including 
towns 7 and 29 (her departure and destination points) 
 Print the array of data and the shortest route as in the following example. 

 
Sample Input 
 
55 55 35 75 60 60 55  

65 70 65 60 50 80 60  

65 35 35 75 80 70 45  
75 45 70 35 35 60 65  

40 80 35 75 40 75 55    

 

Sample Output 
 
55   55   35   75   60   60   55  

65   70   65   60   50   80   60  

65   35   35   75   80   70   45  
75   45   70   35   35   60   65  

40   80   35   75   40   75   55     

 
start in A, motel cost: $ 40    

move East,  motel cost: $ 80    

move East,  motel cost: $ 35    
move NE,    motel cost: $ 70    

move East,  motel cost: $ 35    

move East,  motel cost: $ 60    
move NE,    motel cost: $ 90    

move North, motel cost: $ 60    

move North, motel cost: $ 55 
                         --- 

            total cost: $525  

 

 

Problem 4 – Sorting Squares 



 
Imagine 10 squares, of random sizes, arranged along the top of a cleared screen. 
The sizes range from 1 unit to 12, and they are separated from their neighbours by 
exactly one unit. 

 
 
Use animation to move the squares one at a time to the top of the window, and in 
order of size: largest to smallest.  

The animation should follow the following paths:  

1. First the targeted square should move up to the top, 
leaving a gap in the bottom row  

2. The square then moves to the left  
3. All the squares to the left of the gap should move 

right to close the gap 

Continue this until all squares are in place. 
There will only be one such sets of 10 squares. 
Your program will read from an input file (DATA41.txt for 
the first try and DATA42.txt for the second) 10 numbers 
(between 1 and 12). The sum of this set of 10 numbers will 
never exceed 80 and be never less than 50. Each number 
will occupy a separate line.  
Output should be on a cleared screen or window, and use 
most of the screen vertically and most of the screen 
horizontally. (For example, consider your screen to be 80 x 50 units, and adjust 
everything in proportion, relative the real number of pixels on your screen)  

 
Marking scheme:  
There are 5 conditions that must be met perfectly: 
·  20 points for correctly listing the squares in their starting place, equally spaced.  
·  20 points for correctly pulling each square in order out of their lineup  
·  20 points for closing rank smoothly  
·  20 points for lining them up correctly in their final space, equally spaced  
· 20 points for the animation (leave no trails, clearly follow the designated path) 
These marks will be assigned in order: if one condition is not followed correctly, 
subsequent conditions will not be marked.  
 


