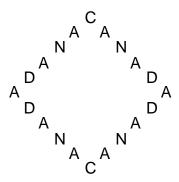


ECOO 2002 Programming Contest

Board wide Contest

to be written after March 3rd

Problem 1: Diamonds


Write a program that will read from the file DATA11 (DATA12 for the second try) 5 words of length 3 to 10 letters and that will print out a diamond shape formed from each of these 5 words.

The program should pause between each diamond, and let you press a key to continue and present the next diamond.

Sample input: (2 of 5 data only)

CANADA Tom

Sample output:

Press any key to continue:

Press any key to continue:

Problem 2: Pairwise Cipher

In war time, messages sent by radio can be heard by the enemy. It is therefore important that the message is in a secret code, so that no one but friends, who have the **key**, can decode the message. The key is a secret phrase that only you and your friends know: It is used to scramble the alphabet. The scrambled alphabet is next used to find the letters to substitute in the message. There are therefore two steps in coding the message: first creating the scambled alphabet, and second, replacing the letters of the message, using the scrambled alphabet.

Suppose the key is "Mon Oncle et ma tante" and the message is: "Fish are birds without wings and birds are fish without fins"

First, the alphabet is scrambled by means of a key as follows:
Line up the letters of the key together with the alphabet:
MONONCLEETMATANTEABCDEFGHI JKLMNOPQRSTUVWXYZ
Now pick out all the letters, one at a time, and if a letter occurs a second time, it is

deleted: We now have the scrambled alphabet: MONCLETABDFGHI JKPQRSUVWXYZ

Next the message itself is prepared:

- 1 The letter "x" (and "X") is replaced by "ks"
- 2 The spaces are replaced by the letter X
- 3 All letters are capitalized.
- 4 All other characters are ignored and all accented letters are replaced by their regular counterparts

FI SHXAREXBI RDSXWI THOUTXWI NGSXANDXBI RDSXAREXFI SHXWI THOUTXFI NS

Encoding the message is done next

Group all the letters in the message by twos, adding the letter X at the end of the message if necessary to make a final pair.

FI SH XA RE XB IR DS XW IT HO UT XW IN GS XA ND XB IR DS XA RE XF IS HX WI TH OU TX FI NS

Now think of each letter as having a left and a right mate, according to the scrambled alphabet. The letter L has a left mate: (C) and a right mate: (E). Even the letter M has a right mate, (O) and a left mate: (Z). In the same way, Z has a left mate (Y) and a right mate (M).

Now substitute each letter of the pairs by the following rule, using the left and right mates in: MONCLETABDFGHI JKPQRSUVWXYZ

Translating FI: take the right mate of I (J), followed by the left mate of F (D): JD Translating SH: take the right mate of H (I), followed by the left mate of H (I) Translating XA: take the right mate of H (I), followed by the left mate of H (I) BW and so on, to give you these new pairs:

JD IR BW TQ DW SH UB XW AH NG AS XW CH UF BW FO DW SH UB BW TQ GW UH YG JV IE VM YE JD UO

And so the final message reads:

JDI RBWTQDWSHUBXWAHNGASXWCHUFBWFODWSHUBBWTQGWUHYGJVI EVMYEJDUO

You must write a program that will decode the messages that are received from your friends.

Your program must read 5 sets of data (a total of 10 lines) from DATA21 (DATA22 for the second try). Each set of data is made up of two lines: a key phrase and an encoded message. The lines are never larger than 80 characters. You must print out both the scrambled alphabet and the decoded message. You may expect only capital letters in the encoded message (line two of each pair) and no spaces. However, the first line in each pair may contain spaces, special characters and lower case letters.

Sample input: (only 2 of 5 sets of data)

nothing is new in this world GCIGBVWWCVLHELRVHHTTHQRVOHEIBVAZCVLHELBVWWJVEHYTGEIOVNYOGCEZ Zorro strikes again! BZABVWRMYGYEKSALKWYGALTIDTYZRGYSRRMWBZYANEYZ

sample output:

NOTHI GSEWRLDABCFJKMPQUVXYZ FI SH ARE BI RDS WI THOUT WINGS AND BI RDS ARE FI SH WI THOUT FI NS

ZORSTI KEAGNBCDFHJLMPQUVWXY ONCE UPON A TIME IN MEXICO NOT SO LONG AGO

Problem 3: Serial Number Dates

Every spreadsheet uses a special number to record dates and time. For example, the number **35835.69412** represents 10 Feb 2002, 4:39 pm. the integer part of the serial number, **35835**, stands for the number of days since 1 Jan 1904 and the fractional part, stands for the fraction of the current day that has passed: .69412 =999/1440. In other words, 35835 days and 999 minutes have passed since midnight, 1 Jan 1904.

Note that 12 Nov 2002 24:00:00 o'clock is an invalid result, and must be rewritten as: 13 Nov 2002, 0:00:00 o'clock.

Write a program that lets you read 5 serial numbers from the file DATA31 (DATA32 for the second try) and that will print out the exact date and time that is represented. As in the example below, you must include seconds.

Dates will vary between 1 Jan 1904 and 31 Dec 2099

Note that the leap years are every year that is divisible by 4, including the year 2000: The serial number for 29 Feb 2000 is 35123

Sample input:

35835. 69412 71582.86421 1. 2345 4444. 4444 1234.5678

```
Sample output:
year = 2002 \quad month = 2 \quad day = 10
time is: 16:39:32
year = 2099 \quad month = 12 \quad day = 25
time is: 20:44:28
year = 1904 \quad month = 1 \quad day = 2
time is: 5:37:41
year = 1916 \quad month = 3 \quad day = 2
time is: 10:39:57
year = 1907 \quad month = 5 \quad day = 19
time is: 13:37:38
```

Problem 4: Count Shapes

The input file contains a rectangular arrangement of dots and X's. The X's form shapes that are separated by space. The dots (periods) represent empty space which separate one shape from another. It is your task to count the number of shapes in the rectangle. For the purpose of defining a shape, please note that any given X belongs to the same shape as any other X that is its neighbour above, below, to its left and to its right. Any two X's on a diagonal are not connected. In the rectangle below there are 6 discrete shapes: two of these are touching diagonally and two shapes are positioned one inside the other.

XXXXXX
XXXXXXXXXXX
XXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxx
xxxxxxxxxx
XXXXXXXXXXXXXX
XXXXXXXXX
XXXXXXXXXXXXX
xxxxxxxxxxx
XXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
xxxxxxxxxxxxxxx
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

DATA41 (DATA42 for the second try) contains 5 sets of data. Each set of data will be made up of two lines containing the width or the rectangle (length or each line) and the second number the height of the rectangle to be examined (number of lines)

Sample input: (only 3 of a set of 5)

```
44
31
....XXXXXX.......
.....XXXXXXXXXXX.....
....XXXXXXXXXXXXXX.....
.....XXXXXXXXXXXXX......
.....XXXXX.....XXXXXXXX.....
....XXXX.....XXXX......
.....XXXXXXXXXXXXX............
.....xxxxxxxxxxx...............
.....xxxxxxxxxxxxxxxxxxxxxxxxxxxxx.....
.....XXX...XXXXXXXXX....XXXX....
.....XXX...XXXXXXXXXX....XXXX....
.....XXX......
......XXXXXXXXXXXXXXXXXXXXXXXX
3
.X.X.
X.X.X
.X.X.
50
.XXXXXXX.X....X
XX.....X.....X......XX......XX.....
.XXXXX....XX.....XX
```

Sample Output:

In rectangle #1 are 6 shapes
In rectangle #2 are 7 shapes
In rectangle #3 are 4 shapes

Problem 5: STACK print server

In a computer science lab, somewhere in Ontario, print jobs are sent to a print server. It is standard practice, that all jobs are placed in a queue, and they are printed in first-come-first-served order.

However, in this case, print jobs are placed on a stack, where last one in is first one out. When a job gets pushed onto the stack at the same time as the server "pops" a job off the stack, popping takes place before pushing.

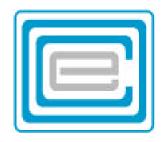
The data file (DATA51 for the first try and DATA52 for the second) will contain 5 sets of data: The first line of each data set contains the number of lines that follow: Each of these lines contains three data, separated by a space: a 6-digit number representing the time the job is pushed onto the stack of the form: HHMMSS; a 3 digit number, representing the number of seconds it takes to print the job; and the name of the person who is sending the job (no more than 10 characters). The list is in the order in which jobs are requested.

It is your task to print out the statistics on the 5th and the last person printed:

Sample input: (3 of 5 sets only: no blank lines between sets)

12	10	13
110246 006 Al yssa	111316 065 Dyl an	112030 172 Miranda
110332 189 Juan	111357 189 David	112045 062 Katherine
110338 124 Jack	111411 050 Miguel	112229 003 Kaylee
110422 074 Tanner	111449 048 Cameron	112310 086 Al exander
110608 130 Mary	111553 047 Moni ca	112440 151 Jesse
110628 117 Seth	111647 173 Sydney	112810 066 Anthony
110915 003 Joshua	111813 172 Maria	112915 023 Stephanie
110947 007 Elizabeth	111832 040 Patrick	113109 170 Si erra
110957 023 Shelby	111836 032 Melissa	113208 115 Gabriel
111048 133 Dalton	111956 098 Ryan	113254 174 Mark
111123 095 Makayla		113352 078 Caroline
111205 193 Kayla		113540 171 Brooke
		113552 178 Steven

Output:


```
job 5 completed at 11:11:11 for Shelby job 12 completed at 11:21:40 for Jack

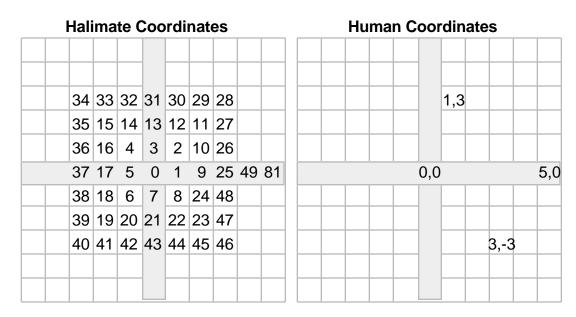
job 5 completed at 11:19:55 for David job 10 completed at 11:28:30 for Sydney

job 5 completed at 11:28:24 for Katherine job 13 completed at 11:45:55 for Gabriel
```

Detailed analysis for the first list:

```
11: 02: 46 Al yssa
                      arrives: busy till: 11:02:52
11: 02: 52 Al yssa
                      is finished: Job #1
11: 03: 32 Juan
                      arrives: busy till: 11:06:41
                      on the stack. Number of people waiting: 1
11: 03: 38 Jack
                      on the stack. Number of people waiting: 2
11: 04: 22 Tanner
                      on the stack. Number of people waiting: 3
11:06:08 Mary
                      on the stack. Number of people waiting: 4
11:06:28 Seth
                      is finished: Job #2
11: 06: 41 Juan
                      from the stack: busy till: 11:08:38
11: 06: 41 Seth
                      is finished: Job #3
11:08:38 Seth
                      from the stack: busy till: 11:10:48
11:08:38 Mary
                      on the stack. Number of people waiting: 3
11:09:15 Joshua
11:09:47 Elizabeth
                      on the stack. Number of people waiting: 4
11: 09: 57 Shel by
                      on the stack. Number of people waiting: 5
11: 10: 48 Mary
                      is finished: Job #4
11: 10: 48 Shel by
                      from the stack: busy till: 11:11:11
                      on the stack. Number of people waiting: 5
11: 10: 48 Dalton
11: 11: 11 Shel by
                      is finished: Job #5
11: 11: 11 Dal ton
                      from the stack: busy till: 11:13:24
11: 11: 23 Makayla
                      on the stack. Number of people waiting: 5
                      on the stack. Number of people waiting: 6
11: 12: 05 Kayla
                      is finished: Job #6
11: 13: 24 Dal ton
                      from the stack: busy till: 11:16:37
11: 13: 24 Kayla
11: 16: 37 Kayla
                      is finished: Job #7
11: 16: 37 Makayla
                      from the stack: busy till: 11:18:12
11: 18: 12 Makayla
                      is finished: Job #8
11: 18: 12 Elizabeth
                      from the stack: busy till: 11:18:19
11:18:19 Elizabeth
                      is finished: Job #9
                      from the stack: busy till: 11:18:22
11: 18: 19 Joshua
11: 18: 22 Joshua
                      is finished: Job #10
                      from the stack: busy till: 11:19:36
11: 18: 22 Tanner
11: 19: 36 Tanner
                      is finished: Job #11
11: 19: 36 Jack
                      from the stack: busy till: 11:21:40
                      is finished: Job #12
11: 21: 40 Jack
```


ECOO 2002 Eighteenth Annual Programming Contest


Regional

April 13, 2002

Problem 1: Halimate Coordinates

Captain John Archer encountered an intelligent species that has a unique way of describing 2 dimensions: The Halimates have no notion of negative numbers or indeed of ordered pairs to designate two dimensional concepts. Instead the Halimates have developed their own way of describing the locations of a two dimensional grid.

The centre of the grid is called 0. Along the main axis, the axis we would call the positive x-axis, lay the numbers 1,9, 25, 49, etc., the odd squares. All the natural numbers are arranged from there, along increasingly larger squares, in a counterclockwise direction as shown. And so, for example, the numbers 0, 30, 46, 81 correspond to the ordered pairs (0,0), (1,3), (3,-3) and (5,0).

The text files DATA11 and DATA12 (no extension) will contain 5 numbers representing Halimate coordinates, which you must translate into Human coordinates as shown in the example below. Your output should appear on a cleared screen or window. The first text file will be used for the first try, the second file for the second try.

Sample Input:

Sample Output:

121212	121212	(-174, -107)
4600	4600	(-34, 25)
123456	123456	(97,176)
9997	9997	(-50,4)
10001	10001	(-50,0)

Problem 2: Snake Word Puzzle

In a certain variation of a word-find puzzle, words may be hidden not just in a horizontal, vertical or diagonal line. Word may change direction by moving left, right, up and down.

						0		
		S			0	N		
	Α	N			I	T		
E	K	Α	S	ı	R	Α	Р	
	Ε							
		S			M	0		
		0	T				U	
	R					N	Т	Α
Ε							I	

The only direction words may not turn is in a diagonal direction. In the example on the left, the words SNAKE, ONTARIO and PARIS are valid words hidden in the puzzle, but STORE and MOUNTAIN contain letters that are connected diagonally and are therefore invalid words. Notice also, that ONTARIO occurs twice, and SNAKE occurs 4 times.

Your input file (DATA21 for the first try, DATA22 for the second) contains 5 words followed by 10 lines of 10 letters, representing a 10x10 word puzzle.

Consider the upper left character to be (1,1), the upper right character to be (10,1) it is your task to

locate the 5 words in the puzzle, by indicating the start of the word: If the word cannot be found, simply leave the starting ordered pair blank.

Note that none of the words have more than 8 letters.

Sample Input: Sample Output:

TWO is located at (5,4)	
THREE is located at (5,7) (7,3)	
FOUR is located at (7,6)	
FIVE is located at	
JDJKQIXWFK	
UBLXVFBCUE	
AENOWVTYAY	
SKEFTHHVEW	
YWBIRERUEL	
YJIKHEFOUO	
CJZMTBWQUA	
UXGUZFWBNM	
PEUMXIRYAJ	
CWXGXCGSOO	

Note: The two words "**ONE**" have a common start, but different endings.

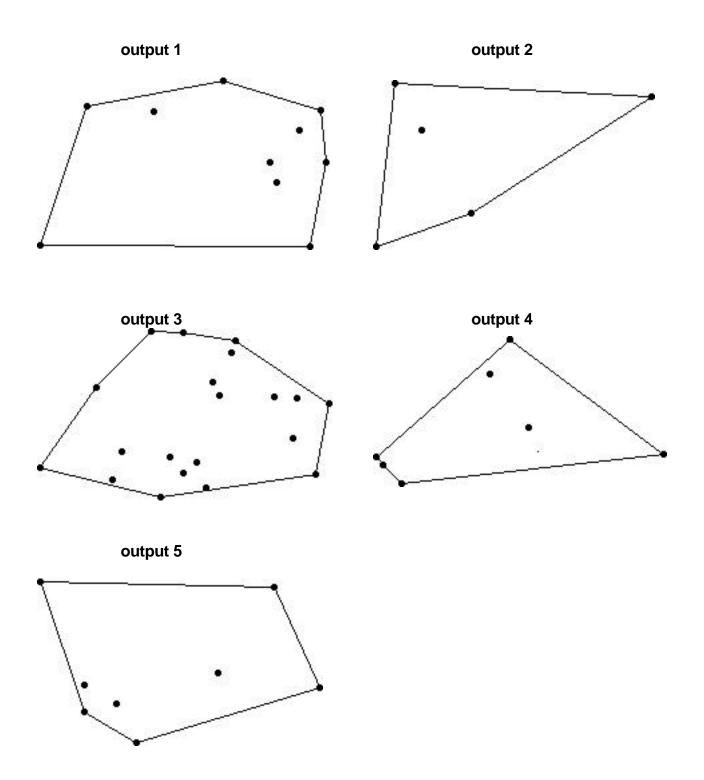
There is no word "FIVE" in the 10x10 square.

Problem 3: Collect the Dots

You are given from 3 to 30 ordered pairs representing dots on graph paper, such that no set of 3 are collinear. You are then required to draw a polygon around all of them, so that no dot falls outside the polygon. Furthermore, the polygon must have a minimum amount of sides and its vertices must be a subset (possibly all) of the dots themselves.

The text file, DATA31 (DATA32 for the second try) contains 5 sets of data. The first line of each set contains a number, n, representing the total number of ordered pairs in the set. The next n lines contain the ordered pairs of the set, in no particular order. The coordinates of each dot are integers between 0 and 1000.

Your output should display all the dots of the set, as well as the polygon, in such a way that the polygon takes up most of the display screen or window. Each new display should appear after pressing any key.


Sample input:

10	
86	2
76	40
91	51
60	99
39	81
83	70
89	82
5 3	3
74	51
19	84
5	
44	27
84	88
23	9
27	95
33	70
20	
35	29

95	16
88	36
82	60
58	23
63	68
32	13
54	17
65	61
89	59
99	
69	
10	
-	8
50	26
	-
54	
44	97
70	92
47	3
2.7	65
_ ′	0.0

1	00		2	8
2	0	2	0	
1	2	2	7	
5	3	5	8	
1	4	2	5	
4	7	4	9	
5	9	3	5	
8	}			
6	9	7	4	
2	2	2	2	
8	0	3	2	
5	5	3	8	
3	0	2	5	
2	2	3	3	
1	1	7	6	
3	5	9		

turn over

Problem 4: Code 29

A certain code cipher encodes messages as follows:

- 1. All letters will be capitalized
- 2. All characters that are not alphabetic will be deleted
- 3. All spaces will be replaced by the digits 1 or 2 in random order.
- 4. All letters are next replaced by their corresponding number:

```
1=1, 2=2, A=3, B=4, ..., Z=28.
```

- 5. Next, each number is multiplied by its neighbour to the right, and replaced by the product
- 6. The last number is multiplied by a key: a secret number between 1 to 28 inclusive.
- 7. Since these numbers no longer can represent characters, the remainder is found after dividing by 29, which gives you numbers in the range 1,...,28 (the product will never produce a zero: this is a property of prime numbers such as 29)
- 8. Finally each number is replaced by its alphabetic value:

Let us encode the phrase:

For centuries the sundial was the predominant way of telling time.

After instruction 4 we have:

8, 17, 20, 1, 5, 7, 16, 22, 23, 20, 11, 7, 21, 2, 22, 10, 7, 1, 21, 23, 16, 6, 11, 3, 14, 2, 25, 3, 21, 2, 22, 10, 7, 1, 18, 20, 7, 6, 17, 15, 11, 16, 3, 16, 22, 2, 25, 3, 27, 2, 17, 8, 1, 22, 7, 14, 14, 11, 16, 9, 1, 22, 11, 15, 7

None that the first space became 1. It could just as easily have become 2.

Since 8x17 = 136, which, when divided by 29 becomes 4 with remainder 20, we take the letter associated with 20, the letter R.

Next, 17*20 = 340. Quotient 11, remainder 21, letter S

Next, 20*1 = 20. Quotient 0, remainder 20, letter R

and so on:

We will use 19 for this occasion as the secret key. and so the last number will be multiplied by the number 19:

7*19 = 133. Quotient 4, remainder 17, letter O

and the secret code becomes:

RSRCDWBKWOQ2KMOJESQRGFBKZSOCKMOJEPJVKMUR2QQBMSOUWCRFTGITG2ZGTHRPO

Write a program that will take lines such as

RSRCDWBKWOQ2KMOJESQRGFBKZSOCKMOJEPJVKMUR2QQBMSOUWCRFTGITG2ZGTHRPO and convert it to its original:

FOR CENTURIES THE SUNDIAL WAS THE PREDOMINANT WAY OF TELLING TIME

The text file DATA41 (DATA42 for the second try) contains 5 sets of 2 lines. The first line contains the key number (see step 6 above) and the second line contains a string of no more than 80 characters.

For each set find the original statement, as in the example below.

Note: In step 7, 8*17 = 136, which, when divided by 29 becomes 4 with remainder 20. In shorthand notation, we say that $8*17 = 20 \mod 29$.

It is a property of prime numbers such as 29, that you can <u>always</u> go backwards, which of course you must do in order to decode the secret message:

Can you write a routine, that will find the 'x' in: $x*17 = 20 \mod 29$?

Sample Input

19

RSRCDWBKWOQ2KMOJESQRGFBKZSOCKMOJEPJVKMUR2QQBMSOUWCRFTGITG2ZGTHRPO

RSCLYPHVKDWBMCRFAKTZHMQQPFBQOKZGAUEI2ACIBF2OKW

11

OJEWQSBJ1NFOJPNFHXPSCYUP2KNMSU1MOJEGDVRBXSQSBJNRSRLI2DGI2

28

C2ORG2JOHE

8

CFKWBPUYIZKMOJESZWSORJPUWCRFTOJLS1RBO

Sample Output

FOR CENTURIES THE SUNDIAL WAS THE PREDOMINANT WAY OF TELLING TIME FORTY PERCENT OF ALL CANADIANS LIVE IN ONTARIO
THE WORD MATHEMATICS COMES FROM THE GREEK WORD FOR LESSON
GESUNDHEIT

SATURDAY IS THE SIXTH DAY OF THE WEEK

ECOO 2002 Eighteenth Annual Programming Contest

Finals

May 1, 2002

Problem 1: Fibonacci Rabbits

The Fibonacci numbers 1,1,2,3,5,8,... are a sequence of numbers where the next number is formed from the sum of the previous two. They represent the number of rabbit pairs there are from month to month, if each pair of rabbits were to generate one new pair each month, except in the first month of their lives.

in the following example, the numbers stand for the age of each rabbit pair

In month 0, there is one newborn pair, aged:	0	total number: 1
in month 1, the same pair:	1	total number: 1
in month 2, the first pair has offspring:	2,0	total number: 2
in month 3, again the first pair has offspring:	3,1,0	total number: 3
in month 4, the first two pairs have offspring:	4,2,1,0,0	total number: 5

and so on.

The assumption is, of course, that the rabbits live forever. What will happen to the numbers, when rabbits die after giving birth to 5 new pairs of rabbits (i.e. at age 6 months)? After giving birth to 10 pairs of rabbits (i.e. at age 11)?

Assume, that in each month, births happen first, then deaths, and finally you take count.

The input file will contain two numbers: the life expectancy, e, in terms of months, (less than 15) and the month, when you are to take count. Each pair of rabbits will have (e-1) rabbit pairs for offspring. Because the numbers increase very fast, the data will always result in a number of 8 digits or less.

DATA11 (no extension, DATA12 for the second try) will contain 10 numbers on 10 lines, representing 5 groups of 2 numbers. The first number in each group represents the life expectancy of each rabit pair, and the second number represents the month number, when you are to take count of how many rabbit pairs there are. Your task is to write a program that will print out the correct number of rabbit pairs there are, in the manner shown in the example below:

Sample Input Sample Output:

5	Life expectancy	number of months	number of rabbits
20	5	20	4420
2	2	30	1
30	9	4	5
9	3	60	20330163
4	7	40	89300197
3			
60			
7			
40			

Problem 2: Mountain Rescue

AABBCC ABBCC To the left is a 5x5 array of letter representing a map of a mountain range. Each letter represents a square kilometer of the area. Different letters represent different plateaux: A being the lowest level and E the top of the mountain.

AAAAD DDDDD BBEBB

Someone is stuck on level E and your rescue party is on the upper left corner of the 5x5 grid. It is your task to find the quickest way up the mountain to level E to rescue the individual.

To travel from one area on the grid to another can be done in 4 different directions, North, South, East or West. It takes 20 mins to travel from one to the other at the same level but one hour to climb to the next level, 3 hours to climb 2 levels at the same time (e.g, from B up to D or from C down to A), 5 hours to climb 3 levels at one time and 7 hours to climb or descend 4 levels at a time.

You are on a rescue mission, and must reach the top of the mountain as quickly as possible. The quickes way will always be 10 moves or less.

Note: An exhaustive search will take $4^{10} = 1048576$ steps, regardless of whether the field contains 25 squares or 2500 squares. Most of these paths will be such useless moves as going back and forth five times from (1,1) to (1,2). Clearly, for the sake of time, you must find a way to elliminate most of such useless paths. When judging your output, you have a limit of 1 minute, in which your program must finish.

DATA21 (DATA22 for the second try) contains 25 lines of 5 letters, representing five 5x5 arrays. Write a program that will find the shortest path, and the length of time it is going to take to reach the summit. Print your result as shown in the example below:

Sample Input

ABBBB	AABBC	AEDDC	AABBC	AAAAA
BBAAA	ABBCC	ABBDC	CCCCC	ADDDA
AABBC	AAAAD	BBBBB	DCCEC	BDEDB
CCDDD	DDDDD	CCCCB	DDDDD	CDDDC
EDDDD	BBEBB	DDDBB	DDDDC	BBBBB

Sample Output:

```
it takes 440 minutes to take the path: ABBACDE it takes 360 minutes to take the path: AABBCCDDDDE it takes 340 minutes to take the path: AABBDE it takes 300 minutes to take the path: AABCCDDE it takes 280 minutes to take the path: AABCDDE
```

Note: Often the path is not unique: in which case, any correct path will do.

Problem 3: Genealogy

Data31 and Data32 are text files containing, among other things, a database with the records of several generations of a family.

Each record is saved as one line, where

- 1 characters 1-5 contains the individual's ID number. (a 5-digit number)
- 2 characters 6-29 contains the person's name
- 3 character 30 contains the person's sex (f or m, always in lower case.)
- 3 characters 31-35 contains the ID number of the individual's father
- 4 characters 36-40 contains the ID number of the individual's mother
- 5 characters 41-45 contains the year that the individual was born

All numbers are positive integers that have exactly 5 digits, with leading zeroes, and the name may contain several spaces:

Sample Input:

58			00050Kathryn Ann	Н	f000010000201937
00055Amy Sue	Н	f000540000001963	00010Laurie Ellen	L	f000090000001969
00039Anthony Dwayne	Н	m000320003301961	00034Lawrence William	Н	m000320003301951
00023Anthony Lee	С	m000000001301955	00007Lisa Marie	S	f000000000601968
00037Barbara Jean	Н	f000320003301956	00021Lloyd Neal	С	m000000001301952
00047Beverly Jane	0	f00000000001937	00035Loretta Jo	Н	f000320003301953
00002Blanche Ellen	S	f00000000001901	00042Marcia Lynn	Н	f000410004001954
00036Brenda Sue	Н	f000320003301954	00051Mark David	A	m000000005001959
00008Bruce Wayne	S	m000000000601970	00045Marlon Edward	Н	m000410004001967
00056Cathy Jo	Н	f000540000001965	00024Martin Earl	С	m000000001301957
00013Charlotte Bernice	Н	f000010000201924	00044Marty Gene	Н	m000410004001959
00049Charlotte Rose	Н	f000460004701960	00040Mary Lou	Н	f000010000201931
00038Christopher Bryan	Н	m000320003301959	00026Matthew Charles	С	m000000001301960
00048Cynthia Jean	Н	f000460004701958	00043Melodie Lou	Н	f000410004001957
00053Daniel James	Α	m000000005001964	00014Pat	С	m000000001301944
00017Dennis Duane	C	m00000001301947	00030Paula Berdeen	L	f000000002701953
00020Donald Ray	C	m00000001301951	00054Phillip Lee	Н	m000010000201943
00015Edward Duane	С	m00000001301945	00057Phillip Lee (II)	Н	m000540000001967
00041Edward Max	Н	m00000000001934	00028Randall Gene	L	m000000002701952
00016Ellen Bernice	C	f00000001301945	00046Richard Daniel	Н	m000010000201933
00004Frank A. (Jr.)	L	m00000000001920	00005Robert Max	D	m000000000001923
00012Gary Wayne	L	m000040000301950	00029Ryan Randall	L	m000280000001962
00003Geneva Elizabeth	Н	f000010000201923	00022Samuel Lee	С	m000000001301954
00033Gladys Lee	S	f00000000001933	00009Thomas Dean	L	m000040000301948
00019Harald Louis	С	m00000001301950	00011Thomas Lee	L	m000090000001970
00027Imogene Stover	Н	f000010000201926	00052Timothy Donald	A	m000000005001960
00058James Alan	Н	m000540000001969	00025Walter Vincent	С	m000000001301959
00031John David	L	m000000002701956	32		
00001John James	Н	m00000000001900	1		
00032John William	Н	m000010000201928	29		
00018Joseph Edward	С	m000000001301948	20		
00006Karen Kay	L	f000040000301944	3		

The first line of the database is an integer, which denotes the number of records that follow (less than 500). Any ID that is cannot be located in the current database will designate an unknown person. and so some individual may have parents who are "unknown".

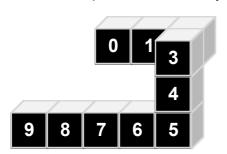
Also, of course, individuals, who are childless have an "unknown" spouse. Even if one has an oldest child, that child's other parent may be unknown.

You may assume that there are always less than 20 children in any given family.

After the database are 5 special integers, representing the ID numbers of individuals for which you must print out the following information: (exactly as in the sample output below)

- both the father and mother (if known, otherwise print "unknown")
- 2 all the children (unless no children can be found)
- the spouse (Here you must assume that the other parent of one's oldest child is the legal spouse of the individual). If there is no spouse, do not print this line.

Each of the 5 sets of data must appear on a cleared screen/window, and the program must be waiting for any character to be pressed before displaying the next set of data.


Sample output:

subject:	John William	Н	born:	1928	male
father:	John James	Н	born:	1900	
mother:	Blanche Ellen	S	born:	1901	
wife:	Gladys Lee	S	born:	1933	
children	:				
	Lawrence William	Н	born:		male
	Loretta Jo	Н	born:		female
	Brenda Sue	Н	born:		female
	Barbara Jean	H	born:		female
	Christopher Bryan	H	born:		male
D	Anthony Dwayne	Н	born:	1961	male
rress any	key to continue				
subject:	John James	Н	born:	1900	male
father:	unknown		born:	unknown	
mother:	unknown			unknown	
wife:	Blanche Ellen	S	born:	1901	
children	:				
	Geneva Elizabeth	Н	born:	1923	female
	Charlotte Bernice	Н	born:		female
	Imogene Stover	Н	born:		female
	John William	Н	born:		male
	Mary Lou	H	born:		female
	Richard Daniel	H	born:		male
	Kathryn Ann	H		1937	female
Press any	Phillip Lee key to continue	Н	born:	1943	male
subject:	Ryan Randall	L	born:	1962	male
	Randall Gene	L	born:		
	unknown		born:	unknown	
no childre					
Press any	key to continue				
subject:	Donald Ray	С	born:	1951	male
father:	inknown		horn•	unknown	
	Charlotte Bernice	Н			
no childre					
	key to continue				
subject:	Geneva Elizabeth	Н	born:	1923	female
father:	John James	 Н	born:	1900	
mother:	Blanche Ellen	S	born:		
husband:	Frank A. (Jr.)	L	born:		
children		_	•		
	Karen Kay	L	born:	1944	female
	Thomas Dean	L	born:	1948	male
	Gary Wayne	L	born:	1950	male
press any	key to continue				

Problem 4: Tunneling

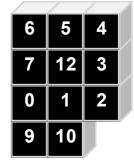
An interesting mining robot of the 24th century is the tunneling machine. It will remove a cubic meter of dirt from where it is operating and beam it to its destination. It will then reinforce the sides of the cube with special walls on all 6 sides, except where there is access to previously mined sections. The machine will in fact remove existing walls, if the newly excavated cubic space is adjacent to an older space.

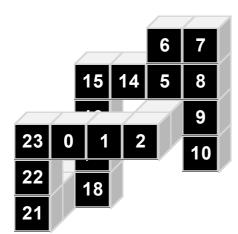
The machine can move in any one of 6 directions: East=1, Up=2, South=3, West=4, Down=5 and North=6. The robot must keep track of how many walls it has installed. The following are some examples:

In the figure to the left, the robot received the following 9 instructions: 1, 1, 3, 5, 5, 4, 4, 4

For convenience, the cubes are numbered in the order in which they have been excavated, with 0 the original reference cube, and therefore the robot started out with the 6 walls of cube #0 Next it excavated cube 1, removing 1 wall of cube 0, adding 5 walls of cube 1

Then it excavated cube 2, removing 1 wall of cube 1, adding 5 walls of cube 2, etc.


After excavating the 9 cubes, the total number of walls is 42


In the figure to the right, the robot received the following 12 instructions: 1, 1, 2, 2, 4, 4, 5, 5, 5, 1, 2, 2.

Again, the cubes are numbered in the order in which

they have been excavated, with 0 the original reference cube, and therefore the robot started out with the 6 walls of cube #0 When cube 7 was excavated, not only was one wall removed from cube 6, one wall also was removed from cube 0, and 4 walls added for cube 7 Cube 8 occupies the same space as cube 0, and therefore no walls were

With cube 12, one wall was removed from cube 11=cube 1, one wall from each of cubes 3, 5, and 7, and 2 walls were added from cube 12. There are a total of 36 walls.

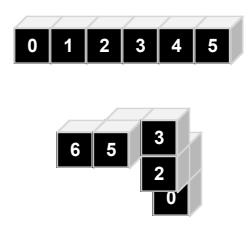
removed or added.

In the figure to the left, the robot received the following 23 instructions: 1, 1, 6, 6, 2, 2, 1, 5, 5, 5, 2, 2, 4, 4, 4, 5, 5, 5, 4, 3, 3, 2, 2

Notice that after cube 10, the robot backs up and retraces former cubes: 11=10, 12=8, 13=5.

This figure has a total of 80 walls.

It is your task to write a program that will keep track of the number of walls that are in the tunnel that the robot has excavated.


DATA41 (DATA42 for the second try) contains 5 sets of data: The first line of each set contains the number n of instructions for the robot. The next n lines contain the moves the robot must make: numbers from 1 to 6. The 5 sets of data form one continuous set of numbers not broken up by any blank lines.

There are never more than 99 moves, and no square will be excavated that is more than 10 meters removed from the starting position in any of the 6 directions.

Sample Input:

5	4	6
1	4	2
1	4	2
1	12	1
1	1	5
1	1	5
6	2	5
2	2	2
3	4	2
2	4	4
4	5	4
3	5	4
4	5	5
9	1	5
1	2	5
1	2	4
3	23	3
5 1 1 1 1 6 2 3 2 4 3 4 9 1 1 3 2 4	4 4 12 1 1 2 2 4 4 5 5 5 1 2 2 2 2 3 1 1 6	2 2 1 5 5 5 2 2 4 4 4 5 5 5 4 3 3 2 2
2	1	2
4	6	2

For your convenience, here are the pictures of the first two tunnels. The last three appear on the previous page.

Sample Output

```
after 5 moves, the tunnel has 26 walls. after 6 moves, the tunnel has 30 walls. after 9 moves, the tunnel has 42 walls. after 12 moves, the tunnel has 36 walls. after 23 moves, the tunnel has 80 walls.
```

Score Sheet ECOO Programming Contest April 2002

Team (School) Name:

		Time handed in	Judge's initials	Score
4	11			
ı,	12			

	Time handed in	Judge's initials	Score
21			
22			

	Time handed in	Judge's initials	Score
31			
32			

	Time nanded in	Judge's illitials	Score
41			
42			
			•

3