
ECOO 2003
Programming Contest

Board wide
Contest

to be written
after March 2rd

Problem 1- Center of gravity

Find the center of gravity among a set of up to 10 spheres

DATA11 (DATA12 for the second try) contains 5 sets of data in the form of positive
integers between 1 and 10000, each integer on a separate line. The first line of each
data set contains n, the number of spheres in the system (a number between 1 and
10). Then follows n sets of 4 numbers: the x, y, z value for the center of mass of each
sphere and m, its mass.

Write a program that will calculate the center of gravity of each system to 1 digit
accuracy after the decimal point.

input:
(to save space each set is in a separate column. However, in the input file, each set
immediately follows the previous set)

1 5 4 5 6
32 25 50 21 62
31 34 21 60 30
60 82 53 33 27
1038 1008 1008 504 840

39 50 21 83
44 21 52 45
85 59 26 27
1008 1260 189 105
31 54 41 75
52 51 76 49
83 62 46 47
720 378 175 21
65 62 53 91
57 55 89 53
109 72 45 57
240 378 70 30
71 83 117
69 99 58
121 65 83
48 70 8

123
64
89
4

output:

system 1 is centered about (32.0 , 31.0 , 60.0) with mass 1038.0
system 2 is centered about (35.0 , 44.0 , 86.0) with mass 3024.0
system 3 is centered about (52.0 , 29.0 , 59.0) with mass 3024.0
system 4 is centered about (31.0 , 66.0 , 37.0) with mass 1008.0
system 5 is centered about (66.0 , 33.0 , 29.0) with mass 1008.0

Problem 2 - Ancestors

Genealogists have an interesting way of ordering their ancestors. The SELF is
considered number 1. Father is 2 and mother is 3. There are 4 grandparents in the
third generation, numbered 4,5,6 and 7. The 8 great-grandparents are numbered 8, 9,
10, 11, 12, 13, 14 and 15. It is not so confusing, if you consider that the father of
number x is 2x, and the mother of x is 2x+1. Since one’s father is 2, then the father of
one’s father is 2(2) and his mother: 2(2)+1 = 5.
The father of 345 is of course 690 and her mother is 691.

Write a program that lets you identify the ancestor by generic name:
In generation 1 there is one person: Susan (the “self”)
In generation 2 there are 2 people: father, mother
In generation 3 there are 4 people: 2 grandfathers, 2 grandmothers
In generation 4 there are 8 people: 4 great-grandfathers, 4 great-grandmothers
in generation 5 there are 16 people: great-2-grandfathers and great-2-grandmothers
and so on
in general, if x>1, then in generation x+3,the people are named great-x-grandfathers
and great-x-grandmothers.

The first 128 lines of the file contain family names. They are the last names of the 256
ancestors of generation 9 in numeric order: The first couple (#256, #257) are named
Adams, the next couple, (#258, #259) are called Alexander, and so on. The last couple
(#510, #511) have the family name of Perrault.

Great-6-grandfather Adams (#256) and great-6-grandmother Adams (#257) are the
parents of great-5-grandfather Adams (#128).

Great-6-grandfather Alexander (#258) and great-6-grandmother Alexander (#259) are
the parents of great-5-grandmother Adams (#129) Not her maiden name of course.

Note that both Susan’s father and Susan’s mother are called: father Adams and
mother Adams. Note that Susan’s mother’s parents take the 65th name in the list:
they are grandfather Griffin (#6) and grandmother Griffin (#7)

Both DATA21 and DATA22 contain 128 last names, followed by 10 numbers between
1 and 511, representing 10 ancestors of Susan Adams, or Susan herself.
You must identify these ancestors as in the sample solution on the next page.

Note: Since there will be 10 lines in your solution, each correct line will earn you 10
points.

To save space, the data is presented as shown. The text file however will have this
data listed on 128+10 =138 lines.

sample input: (the 128 names)

Adams Boucher Cooper Fortin Griffin James Lopez Murphy
Alexander Brooks Cote Foster Griffiths Jenkins Marshall Murray
Allard Brown Cox Fournier Hall Johnson Martel Nelson
Allen Bryant Davies Gagne Harris Jones Martin Ouellet
Anderson Butler Davis Gagnon Harrison Kelly Martin Owen
Archambault Campbell Demers Garcia Hayes King Martinez Palmer
Bailey Caron Diaz Gauthier Hebert Knight Mason Paquet
Baker Carter Dixon Gibson Henderson Langlois Matthews Parent
Barker Chapman Dubois Girard Hernandez Leclerc Menard Parker
Barnes Charbonneau Dupuy Giroux Hill Leduc Miller Patel
Baudouin Clark Edwards Gonzales Holmes Lee Mills Patterson
Bedard Clarke Ellis Gonzalez Houde Lefebvre Mitchell Pearson
Belanger Cloutier Evans Gosselin Howard Levesque Moore Pelletier
Bell Coleman Fisher Graham Hughes Lewis Morgan Pepin
Bennett Collins Flores Gray Hunt Lloyd Morin Perez
Bouchard Cook Fortier Green Jackson Long Morris Perrault

sample input: (the 10 numbers)

3
377
500
1
18
100
321
25
7
15

sample output:

 3 represents: mother Adams
 377 represents: great-6-grandmother Gosselin
 500 represents: great-6-grandfather Patterson
 1 represents: Susan Adams
 18 represents: great-2-grandfather Boucher
 100 represents: great-4-grandfather Hernandez
 321 represents: great-6-grandmother Cooper
 25 represents: great-2-grandmother Griffin
 7 represents: grandmother Griffin
 15 represents: great-grandmother Lopez

Problem 3- Balloonist

In order to travel in a certain direction, a balloonist must rise or descend to the layer of
air where the wind blows in that direction. Today the balloonist finds herself in an
awkward position. She has thrown out all her ballast, so she can no longer rise to a
higher level. She can stay at a given height, or descend. The computer on board can
tell her exactly what her position is (x,y) relative to home (0,0). If x is positive, she is
north of home, if negative, south. If y is positive she is to the east of home, if negative,
west.

The computer also informs her of the wind direction and wind speed of all the layers
of air below her. Once she has arrived in a certain layer of air and is therefore traveling
with the current wind, she can stay there indefinitely. Unfortunately, when descending
through any given layer, it takes a minimum of 1 minute to pass through it, so that she
may be blown off course during that minute. She must therefore carefully plot a path
home.

In the first example there are 6 layers of air below her. She is located 100 km north of
home and 50 km east, for the computer indicates that she is at (100,50). The winds in
the six layers of air she must go through are respectively: S 11, E 4, N 18, E 10, W 5, S
20. This means that the first layer is moving in a southerly direction at 11 km per hour,
the next layer is moving in an easterly direction at 4 km per hour and so on.

She wants to travel as fast as possible, and since the last two layers go in the right
direction and are fastest, she will only spend the minimum 4 minutes traveling
through the first 4 layers.

After passing through the first layer she finds herself at (99.82, 50). After the next
layer she is at (99.82, 50.07) and after the third layer at (100.12, 50.23)
She must therefore stay in the 5th layer for 602.8 minutes and in the 6th layer for
300.35 minutes. Her total traveling time would therefore be 907.15 minutes, which
may be rounded off to 907 minutes.

DATA31 (DATA32 for the second try) contains 5 sets of data. The first two lines in each
set contains the x and y value of the initial position of the balloon, a number between
 -2000 and 2000. The third line in each set contains the number of layers of air the
balloonist must travel through. This number, n, is between 4 and 20 inclusive. Then
follow n lines containing one letter: N, E, W or S indicating the wind direction, one
space character and an integer between 1 and 100, the speed of the wind in km per
hour.

Write a program that will read the data, find the fastest way home and print out the
amount of time this takes to the nearest minute. You may assume that in all cases
each of the 4 directions are represented at least once, and so there is always a way to
get home.

input
(in order to save space, the data is presented in 5 separate columns. On file the data
would be in one column, taking up 42 lines.

100 1 1000 100 0
50 1 4 100 100
6 4 4 5 8
S 11 E 9 N 10 N 20 E 19
E 4 W 6 W 18 S 8 S 21
N 18 N 16 E 4 E 8 N 10
E 10 S 99 S 6 W 20 S 15
W 5 E 4 S 20
S 20 W 19

E 11
W 7

output

The balloon took 907 minutes to get home

The balloon took 16 minutes to get home

The balloon took 10017 minutes to get home

The balloon took 1056 minutes to get home

The balloon took 329 minutes to get home

Problem 4 - RoboCar

Stan built a robot car that can drive along a straight runway and that can modify its speed every
second: It can however only change its speed up or down by one meter per second: If it is going
5 meters per second during the space of one second, it can slow down to 4 meters per second,
stay at 5 meters per second or speed up to 6 meters per second in the next time span. Stan can
control its top speed as well as the total distance the car must travel.

Speed here is taken to mean average speed. To say, for example, that the speed at a given
time is 7 meters per second, means, that during the given time span of one second, the car
travels exactly 7 meters.

Stan’s car will always travel as fast as possible, given that it must start from standstill and can’t
crash through the finish line: The finish line might possibly be a blank wall. During the first second
the car’s speed is therefore one meter per second, and during the last second, its speed must
also be one meter per second.

If for example the car has been given the instruction to go 100 meters at a top speed of 8 meters
per second, its best time will be 20 seconds, although the details of where it sped up or slowed
down might vary. One solution is shown here:

elapsed seconds

speed per second

kms travelled

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 1 3 6 10 15 21 28 36 44 51 58 65 72 79 85 90 94 97 99 100

 1 2 3 4 5 6 7 8 8 7 7 7 7 7 6 5 4 3 2 1

DATA41 (DATA42 on the second try, will contain 10 lines each containing one integer. (Value
between 1 and 32000 inclusive). They represent 5 sets of 2 data: First, the distance to be
traveled and second, the speed limit of the robot car.

Write a program that will calculate the fastest time it will take to finish the race in each of the 5
instances. The output should mirror the output of the sample.

sample input:

100
8
1
10
43
1
1000
1000
32000
100

sample output:

Stan’s car travels the 100 meters in 20 seconds
Stan’s car travels the 1 meters in 1 seconds
Stan’s car travels the 43 meters in 43 seconds
Stan’s car travels the 1000 meters in 63 seconds
Stan’s car travels the 32000 meters in 419 seconds

ECOO 2003
Nineteenth Annual

Programming Contest

Regional
April 5 2003

Instructions to Programmers

1. You may use one computer and no printer. You may have the use of a calculator.

2. You may use any programming language, however it must be able to read a text
file, and the output must be on the screen. You may use no other software or
special libraries.

3. You may use one resource book, one that accompanies the programming
software, but no third party manual is allowed.

4. Set up your machine before 11:00 a.m.
The contest will take place between 11:00 a.m. and 2:00 p.m.

5. You have no more that 2 chances to have your program tested. Input data for the
first try is DATAx1 and input data for the second try is DATAx2, where x = 1,2,3 or 4
the problem number.

6. Keep the score sheet near your machine.
When you are ready to have your program tested, this is the procedure you
should follow:
- Wave the colour coded sheet in the air, to signal the appropriate judge that

your program is ready to be tested.
- The judge will bring over the disk. While two judges are present, copy the

file onto your hard drive and RETURN the disk
- YOU run the program: The judges are there to observe.
- They will tally your score and you move on the next program. They will take

your sheet with them to the Scoring station. It will be returned after it is
processed.

- Once the two judges move away from your machine, their decision, right or
wrong, will be final. While deliberating, they may call over a 3rd person to
arbitrate: If two of the three agree, that decision is final.

7. At 2:00 p.m. the contest ends, and many teams will probably wish to take the
opportunity to have their program judged for the last time. Therefore DURING
THE LAST FIVE MINUTES OF THE CONTEST, only step 1 of the judging process
will take place, namely the jotting down of the time. The other steps can take
place at leisure after 2:00. Therefore, at 2:00 pm stand well away from your
machine, to clearly indicate, that you are no longer working on it.

Problem 1 - Base Three Code

All the capital letters, together with the space character make 27 distinct characters,
and 27 is a power of 3. This fact forms the basis for the following secret code:

1- Change the letters in the message to UPPER CASE.

2- Eliminate all characters that are not one of the 27 characters allowed,
substituting the * character for “space”

3- Express each character as a 3-digit base 3 number: A becomes 000.
B, C, D and E become 001, 002, 010, 011 respectively and so on:
Z becomes 221 and the space character becomes 222.

4- If the original length of the string was n characters, it now is 3n digits long.
Split the new string into 3 parts, each n digits long: part A, part B and part C.

5- Form a new set of 3-digit numbers, where the first digit comes from part A; the
second digit comes from part B and the last digit comes from part C.

6- Convert each 3-digit number back to one of the 27 characters, a capital letter or
a star (*) character.

A message such as: I am the captain
first becomes:
I*AM*THE*CAPTAIN

and then gets translated to the base 3 numbers:
022-222-000-110-222-201-021-011-222-002-000-120-201-000-022-111

then from the three groups;
0222220001102222 0102101122200200 0120201000022111

it becomes:
000-211-202-220-212-200-011-010-020-120-120-002-202-221-201-201

and finally:
AWUYXSEDGPPCUZTT

DATA11 (DATA12 for the second try) contains data on 5 separate lines. Each line
contains the secret code of one message in the form of a string of characters. No line
is longer than 85 characters.

Write a program that decodes each message and prints out the five messages on the
screen, as in the example below:

Sample input:

CWYTZUFCBLJG*XWWHPGVMHLNZ*ZIISEB
GEIJOPHPAYSXFHEW*UOUYHZTCZBC
FXXY**IAIPQHXTTXMEG
HBHRRLDPIYZTHFNELMTS
G*YTTUHH*MQYLRIJPCBIFPKNIQH

Sample output:

I AM THE CAPTAIN OF THE PINAFORE
AND A RIGHT GOOD CAPTAIN TOO
I AM VERY VERY GOOD
AND BE IT UNDERSTOOD
I COMMAND A RIGHT GOOD CREW

(words from HMS Pinafore by Gilbert and Sullivan)

Problem 2 - Web Sorting

Imagine a set of communities in some fictional land, that wanted to be connected to
the internet. Each community would be connected to a minimum of two other
communities by cabling. The idea is, of course that in case one connection failed,
they would always be able to count on the other connection.

They hit upon the following idea: To find the one community whose distance to all the
other communities was on the average the shortest. It would be called THE CAPITAL.
The capital would get a direct connection to the Internet. All others would have to
connect to the capital. For a second connection, all the other towns would have to
pick a partner town and they would connect to each other. Since there were an even
number of towns, excluding the capital, this could easily be done.

It is not practical to find the one solution to partnering communities that would result in
the least amount of cabling. However, the following strategy would come close:
Of all the remaining towns, pick the two towns that are the closest, and connect these.
Then of the remaining towns, pick the two towns that are the closest, and connect
these. Repeat this procedure, until all towns are partnered off.

DATA21 (DATA22 for the second try) contains the 5 sets of data. The first line in each
set contains an odd integer, n, between 3 and 25, representing the number of
communities under consideration. Then follow n sets of 2 integers, which stand for
the x and y values of the ordered pairs, representing the relative positions of each
community in kilometers (they are positive integers less than 32000)
The towns are named in order by the corresponding letters of the alphabet.

Your task is to identify the capital in each set, (there is always one unique solution)
and the list of pairs of towns that are partnered, as in the example below.

Note that the pairs of towns should be printed in the order in which you find each pair.
And each pair should occur in alphabetical order:
The distances for example in the first sample output are:
For BI 342.2 km, for DE 461.3 km, for CF 538.2 km, for AG 2272.7 km and for JK
3073.5 km

Sample input: (for convenience each set is in a separate column, however, in the
input file, each number occupies one separate line:

11
325
4400
675
3330
2340
235
2575
3545
2540
3085
2650
675
2595
4510
1935
3340
365
3185
175
1290
2985
45

3
3880
255
4870
4265
4470
200

9
845
2255
3990
2925
3815
4475
680
1880
4910
1410
1910
4125
3360
200
2165
300
1930
1240

7
380
4610
215
2365
3455
2945
1965
1735
4080
3800
50
4745
4770
1515

5
1285
4725
4255
4750
390
1535
1140
1365
4200
15

Sample output:

the Capital is: H
the partners are: BI DE CF AG JK

the Capital is: C
the partners are: AB

the Capital is: I
the partners are: AD GH BC EF

the Capital is: C
the partners are: AF BD EG

the Capital is: D
the partners are: AB CE

Problem 3 - RoboCar 2

Stan build a robot car that can drive along a straight line and that can modify its speed
every second: However, it can only change its speed up or down one meter per
second: If it is going 5 meters per second one second, it can change its speed to 4, 5
or 6 meters per second the following second. Depending on the terrain the car is
traveling, Stan can preset its top speed and the total distance the car must travel.

Speed here is taken to mean: Average speed. To say that for example, the speed at a
given time is 7 meters per second, this means, that during the given second, the car
travels exactly 7 meters.

The car will always travel as fast as possible, given that it must start from standstill
and can’t crash through the finish line, which might possibly be a blank wall. During
the first second, the car’s speed is therefore 1 meter per second, and during the last
second, it must also go 1 meter per second.

If the car has been given the instruction to go 100 meters at a top speed of 8 meters
per second, it will take 22 seconds: traveling during each second for example the
following number of meters:

elapsed seconds

speed per second

meters traveled

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 0 1 3 6 10 15 21 28 36 44 51 58 65 72 79 85 90 94 97 99 100

 1 2 3 4 5 6 7 8 8 7 7 7 7 7 6 5 4 3 2 1

Read the chart as follows: The speed between second 0 and second 1 is 1 mps and
at the end of second 1 meter 1 has been reached. Between second 15 and second
16 the speed is 5 mps and at exactly the 16th second, it crosses the 90th meter line.
In all examples, the individual speeds at each second may vary, but the shortest
traveling time is always the same.

Stan has added the ability to sense one speed bump on the road. By giving the
distance from the starting line of the speed bump, and the speed limit it must obey
crossing the speed bump, the car can adjust its speed to accommodate the extra
hurdle. During the critical second that it crosses the obstruction, it will be going at or
below the speed limit. if the speed bump occurs between one second interval and
the next, the car will obey that speed limit during both seconds.
If in the example above, the speed bump occurs at a distance of 50 meters from the
start, and the speed limit is 2 on the speed bump, the race will take 25 seconds, and
the speeds during each of these 25 seconds could be:

elapsed seconds
speed per second

meters traveled

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 1 2 3 4 5 6 6 6 5 4 4 3 2 3 4 5 6 6 6 5 4 4 3 2 1
0 1 3 6 10 15 21 27 33 38 42 46 49 51 54 58 63 69 75 81 86 90 94 97 99 100

Note here, that between second 12 and second 13 the speed is 2 mps, and so meter
50 is reached and passed in that interval, (at second 12.5) and at that speed.

DATA21 (DATA22 on the second try, will contain 20 lines each containing one integer
value.
They represent 5 sets of 4 data:
(a) the distance to be traveled (a number between 10 and 500
(b) the overall speed limit (a number between 2 and 500)
(c) the distance between the speed bump and the starting position
(d) the speed limit over the speed bump

It is your task to write a program that will calculate the shortest time it will take to finish
the race for each of the 5 sets of data.

Sample input:

100
6
50
2
500
10
30
4
43
2
10
1
250
250
90
16
320
150
310
2

Sample output:

Stan’s car travels the 100 meters in 25 seconds
Stan’s car travels the 500 meters in 62 seconds
Stan’s car travels the 43 meters in 24 seconds
Stan’s car travels the 250 meters in 31 seconds
Stan’s car travels the 320 meters in 38 seconds

Problem 4 - Daedalus’ Garden Path

Daedalus, the designer of the Labyrinth for King Minos of Crete also build a
meandering garden path for the King. Of course, the road was paved with gold, and it
was expensive. The path was one cubit wide and its length was measured in cubits
also: A cubit of length cost the king 5 talents. Where ever the path crossed itself, a
bridge was build, at a cost of 100 talents a piece. Occasionally the path ran over itself,
creating two levels. Each cubit of the second or succeeding level cost the king an extra
100 talents as well.

start
stop

Daedalus had his own special code for defining the path. He used integers to indicate
straight ways in number of cubits, and the letters L (for “turn left”) or R (for “turn right”).
The diagram above, for example is based on the following string:
5L6R6R15L7L9L3L5R10R14R9R10R6L2R7

The path is 5+6+6+15+7+9+...+7=114 cubits which normally cost 5x114 = 570 talents
There are three bridges which cost an extra 300 talents and 7 cubits are covered by a
second level road (the rise and descend for bridges and elevated pathways are not
counted) for an extra 700 talents.
The total cost therefore is 1570 talents.

Daedalus got 5 sets of paths, which can be found in DATA41 (DATA42 for the second
try). The file contains 5 lines each containing a string of data no longer than 255
characters. They contain valid positive integers between 1 and 99, separated by
capital L or capital R. The string contains no other characters, and starts with a
number and ends with a number.
The total length of the path is never longer that 1000 cubits.

Write a program that finds the cost of building each pathway, printing the results as in
the examples below.

Sample input:
5L6R6R15L7L9L3L5R10R14R9R10R6L2R7
15R23R18R25R20R23R18R14R3L11R11R6R8R8R3R16R6R25
99L99R99L1
89
18L29L11L35L9L25R8R2R17R14R2R2L6L10

Sample output:

the path is 114 cubits long and costs 1570 talents
the path is 253 cubits long and costs 3665 talents
the path is 298 cubits long and costs 1490 talents
the path is 89 cubits long and costs 445 talents
the path is 188 cubits long and costs 3440 talents

Note: here is a picture of the last example:

ECOO 2003
Nineteenth Annual

Programming Contest

Finals
May 7, 2003

Instructions to Programmers
1. You may use one computer and no printer. You may have the use of a calculator.

2. You may use any programming language, however it must be able to read a text file, and
the output must be on the screen. You may use no other software or special libraries.

3. You may use one resource book, one that accompanies the programming software, but
no third party manual is allowed.

4. Set up your machine before 11:00 a.m.
The contest will take place between 11:00 a.m. and 2:00 p.m.

5. You have no more that 2 chances to have your program tested. Input data for the first try is
DATAx1 and input data for the second try is DATAx2, where x = 1,2,3 or 4 the problem
number.

6. Keep the score sheet near your machine.
When you are ready to have your program tested, this is the procedure you should follow:
- Wave the colour coded sheet in the air, to signal the appropriate judge that your

program is ready to be tested.
- The judge will bring over the disk. While two judges are present, copy the file onto

your hard drive and RETURN the disk
- YOU run the program: The judges are there to observe.
- They will tally your score and you move on the next program. They will take your

sheet with them to the Scoring station. It will be returned after it is processed.
- Once the two judges move away from your machine, their decision, right or wrong,

will be final. While deliberating, they may call over a 3rd person to arbitrate: If two of
the three agree, that decision is final.

7. At 2:00 p.m. the contest ends, and many teams will probably wish to take the opportunity
to have their program judged for the last time. Therefore DURING THE LAST FIVE
MINUTES OF THE CONTEST, only step 1 of the judging process will take place, namely
the jotting down of the time. The other steps can take place at leisure after 2:00.
Therefore, at 2:00 pm stand well away from your machine, to clearly indicate, that you are
no longer working on it.

Problem 1 - Power Cipher
Ryan discovered that he could rearrange the first 10 natural numbers by creating a sequence as follows:
starting with 1 as the first number in the sequence, he multiplied each number in the sequence by 8. If the
number becomes larger than 10 he divides by 11 and takes the remainder. He found, that the first 10
numbers in the sequence: t1=1, t2=8, t3=9, t4=6, t5=4, t6=10, t7=3, t8=2, t9=5, t10=7 were simply a
rearrangement of the numbers 1, 2, 3, 4, ..., 10. It does not matter, if he were to start with 1 or any other
number between 1 and 10.

The sequence is called the powers of 8 mod 11, for the numbers correspond to:
 80 mod 11, 81 mod 11, 82 mod 11, ... , 89 mod 11.

Ryan decided to encrypt his messages by taking letter number tx and placing it in the xth position.

Consider the following message:

I’ll tell thee what, prince;^
a college of witcrackers cannot flout me out of my humour.^
Dost thou think I care for a satire or an epigram?^

The message contains 139 characters (The end of line is marked by the character ^). So Ryan divided the
characters in sets of 10, and padded the end with the start of the message, to complete the last set of 10.
(The “/” is inserted here for ease of viewing only, it is not part of the encoding)

I’ll tell /thee what,/ prince;^a/ college o/f witcrack/
ers cannot/ flout me /out of my /humour.^Do/st thou th/
ink I care/ for a sat/ire or an /epigram?^I/

Rearranging the characters, the message becomes:

Illtl l’ e/tatwe,eh h/ ;^ciarpne/ e elooclg/faccikw tr/
enoa tsrcn/ meto lfu /omyf tuo /h^Droomuu./s toth thu/
iar eknIc/ saartof /ianr ero /e?^agIiprm/

Ryan found that powers of 8 could in the same way rearrange numbers mod other primes. In fact, some
powers of base different from 8 had that same property.
He could encrypt messages, by sending a 3-number key: (1) the prime modulus, in this case 11, (2) the
starting number, in this case 1, and (3) the base for the powers, in this case 8.

The last message was decoded using 11-1-8. However, when using 53-7-20 Using the same message:
I’ll tell thee what, prince;^a college of witcracker/
s cannot flout me out of my humour.^Dost thou think /
I care for a satire or an epigram?^I’ll tell thee wh/

it becomes:

elicle fnre geeate ltlI,^kctl ccwh;ahpw’o r ea troil/
orooayf o^mDkuhnt .ltsuhn o timho ue m tntso tu ufc/
 ?laaertn Ir’w eesa^ fI i teooe lapgirt rhllre hmac/

You must write a program that will unscramble Ryan’s five messages. The input file, DATA11 (DATA12
for the second try) will contain 4 numbers, each on a separate line, followed by several lines of text.
The numbers represent respectively: the modulus, the initial value, the base of powers, and the number of
lines of text that follow.
Note that:

1- The modulus is always a two-digit prime number.
2- The repeated (if any) characters at the end of the message do not contain the ^ character, and so

the last ^ character in the decoded message spells the end the original message.
3- You may assume that the text contains an exact multiple of (modulus-1) characters.
4- Space characters may occur at the start, the middle or the end of lines, however, in the following

sample input, NO space characters occur at the end of lines.

Sample Input (3 of 5 sets only, text from Shakespeare’s Much Ado About Nothing)

11
1
8
3
Illtl l’ etatwe,eh h ;^ciarpne e elooclgfaccikw trenoa tsr
cn meto lfu omyf tuo h^Droomuu.s toth thuiar eknIc saart
of ianr ero e?^agIiprm
53
15
3
5
iswbl^lware etb sa hh’ellnaab naof N; n t,wae miiidcm oo b dn tb
af neIiosIeiuenhrrtma nhi^,ns hag.ioryntro,ophspnt ia o n
alyug lIpmius^prthi tr ewoknolriir ftneea son etha
doatyahw; tcethgasdrtn en^amths,a fiao^s twta enhet oaoraivf
feeuI vg irl tad dutino ^isN.lnagi ssc,yoys hag trm d icdniinahmn
83
12
5
2
lhy!.!as lppeeyleoouwIhP.m^itoe p c tsawrPtut I acyoew Pe
milrouuoi otIlcsol ! l

Sample output:

I’ll tell thee what, prince;
a college of witcrackers cannot flout me out of my humour.
Dost thou think I care for a satire or an epigram?

No; if a man will be beaten with brains,
a’ shall wear nothing handsome about him.
In brief, since I do purpose to marry,
I will think nothing to any purpose that the world can say against it;
and therefore never flout at me for what I have said against it,
for man is a giddy thing, and this is my conclusion.

Peace! I will stop your mouth.

Problem 2- Chasing Spiders
Consider three spiders chasing each other: Spider 1 chases after spider 2. Spider 2 chases
after spider 3 and spider 3 chases after spider 1. They each start out in different positions on
a cartesian grid, where both the x-axis and y-axis has been divided into discrete centimeters.
They run at different speeds, measured in centimeters per second.

spider 3

spider 2 spider 1

Depending on their positions and speed, one spider will make a catch before the other two.
Each spider runs in a predictable way: It looks at its quarry at the start of each second. It then
runs in a straight line in that direction for exactly one second, even though during that second
its quarry is also moving. At the start of the next second, they look again, adjust their direction
and run again for one second. Each spider repeats the procedure until one of them catches
another.

If the distance between a spider and its quarry is less than the distance it can crawl in one
second, it jumps, which is instantaneous, and it catches its victim. If there is a tie, spider 1
wins over spider 2 or 3, and spider 2 wins over spider 3.

DATA21 (DATA22 for the second try) contains five sets of data: Each set takes up 9 lines, three
positive integers for each spider: Its x-position, its y-position and its speed.
Write a program that will read the file and print out which spider will make a catch and how
many seconds it will take. All numbers are integers between 2 and 2000

Sample Input: (for convenience each set is in a separate column, however, in the input file,
each number occupies one separate line:

5
0
8
20
0
8
105
0
8

350
1225
8
100
1100
8
775
825
12

775
950
6
150
250
15
50
1000
13

150
850
10
850
800
10
275
675
9

600
575
10
525
1225
9
50
200
12

Sample output:

spider #2 made the catch after 5 seconds

spider #2 made the catch after 37 seconds

spider #3 made the catch after 43 seconds

spider #1 made the catch after 35 seconds

spider #2 made the catch after 55 seconds

Problem 3 - Perimeter
Imagine shapes made from unit squares as in the following examples:

By manually counting the lengths of the sides of the figures, you can verify that their
circumferences are in order from left to right: 26, 10, 12, 36 and 20

It is your task to create a program that will find their circumference, given the format as in the
sample input below.

The text file DATA31 (DATA32 for the second try) will contain one rectangle filled with minus
signs (-). Within the rectangle you will find 5 shapes, each one formed from the first five letters
of the alphabet.

please note that:
1- Each letter of a shape is connected to the rest of the shape with at least one of its four

sides.
2- Each shape is uniquely determined by the capital letter with which the shape is formed.
3- Each shape is separated from every other shape: They do not touch, not every at the

diagonal.

The first line of the input file contains a number between 10 and 80 representing the length of
the rectangle (the number of lines of text to be read in) and the second line contains a number
between 10 and 80 containing the width of the rectangle (the length of each line)

Sample Input: Sample Output:

13
29
----------------------------- A has a perimeter of 26
---AAAAAAA-------CCCC-------- B has a perimeter of 10
------AAAAAA--------C-------- C has a perimeter of 12
--------AAAA-----B----------- D has a perimeter of 36
---------AA------B----------- E has a perimeter of 20
-----------------B-----------
-----DDDD--DDDD--B-----------
-------D--DD-----------------
-------DDDDD--------EEEEE----
---------D---------EEEEEE----
---------D---------EEEEEE----
-------------------EEEEEE----

4- Wine Merchant
Three bottles of various sizes are used for measuring wine. The first bottle is completely filled with wine,
and the others are completely empty. When a customer comes to buy wine, the merchant uses the three
bottles in combination to measure out the correct amount.

For example: The merchant has the three bottles measuring respectively 5 litres, 4 litres, and 2 litres. The
5 litre bottle is completely filled, and the 4 and 2 litre bottles are empty. Now the customer wants exactly 3
litres.

Solution: step 1: pour 2 litres from the first bottle into the third bottle.
step 2: present the first bottle to the customer, which now contains 3 litres

DATA41 (DATA42 for the second try) contains five sets of 4 numbers, each number on its own line. The
first three numbers represent the three sizes of bottles #1, #2 and #3. The fourth number represents the
amount of wine the customer wants to buy. Bottle #1 is always completely full and bottles #2 and #3 are
always empty.

Write a program that will state in the fewest steps possible, how this might be done as in the sample
solution below. Any solution that takes more than 7 steps (lines) is considered impossible.

Sample input:

19
7
20
14
20
6
20
2
10
18
13
2
20
19
5
1
16
2
12
6

Sample output:

pour bottle #1 into bottle #2 to get: 12 7 0
pour bottle #2 into bottle #3 to get: 12 0 7
pour bottle #1 into bottle #2 to get: 5 7 7
pour bottle #2 into bottle #3 to get: 5 0 14
present bottle #3
press any key to continue..

pour bottle #1 into bottle #2 to get: 14 6 0
pour bottle #2 into bottle #3 to get: 14 0 6
pour bottle #1 into bottle #2 to get: 8 6 6
pour bottle #2 into bottle #3 to get: 8 0 12
pour bottle #1 into bottle #2 to get: 2 6 12
present bottle #1
press any key to continue..

the problem is impossible to solve
press any key to continue..

pour bottle #1 into bottle #2 to get: 1 19 0
present bottle #1
press any key to continue..

pour bottle #1 into bottle #3 to get: 4 0 12
pour bottle #3 into bottle #2 to get: 4 2 10
pour bottle #2 into bottle #1 to get: 6 0 10
present bottle #1
press any key to continue..

